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1. Introduction

Let F : R
L × R

M × R → R be a Carathéodory function, which is locally
Lipschitz in the second variable (the real variable) and satisfies the follow-
ing conditions:

(F1) F(z,0)= 0 for all z∈R
L×R

M and there exist c1> 0 and r ∈]p,p�[
such that

|ξ |≤ c1(|s|p−1 +|s|r−1), ∀ξ ∈ ∂F (z, s), (z, s)∈R
L×R

M ×R.

We denoted by ∂F (z, s) the generalized gradient of F(z, ·) at the point s ∈R

and p�= (L+M)p/L+M−p is the critical Sobolev exponent.
Let a: RL×R

M →R (L≥ 2) be a nonnegative continuous function satis-
fying the following assumptions:

(A1) a(x, y)≥a0>0 if |(x, y)|≥R for a large R>0;
(A2) a(x, y)→+∞, when |y|→+∞ uniformly for x ∈R

L;
(A3) a(x, y)=a(x ′, y) for all x, x ′ ∈R

L with |x|= |x ′| and all y ∈R
M.

� This work was partially supported by MEdC-ANCS, research project CEEX 2983/11.10.2005.
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Consider the following subspaces of W 1,p(RL×R
M)

Ẽ={u∈W 1,p(RL×R
M):u(x, y)=u(x ′, y)∀ x, x ′ ∈R

L, |x|=|x ′|,∀y ∈R
M},

E=
{
u∈W 1,p(RL×R

M):
∫

RL+M
a(z)|u(z)|pdz<∞

}
,

Ea = Ẽ∩E=
{
u∈ Ẽ:

∫
RL+M

a(z)|u(z)|pdz<∞
}

endowed with the norm

‖u‖p=
∫

RL+M
|∇u(z)|pdz+

∫
RL+M

a(z)|u(z)|pdz

and the closed convex cone K={v∈E:v≥0 a.e. in R
L×R

M}.
The aim of the present paper is to study the following eigenvalue

problem (Pλ): For λ>0 find u∈K such that
∫

RL+M
|∇u(z)|p−2∇u(z)(∇v(z)−∇u(z))dz+

∫
RL+M

a(z)up−1(z)(v(z)−u(z))dz

+λ
∫

RL+M
F 0(z, u(z);v(z)−u(z))dz ≥ 0

for all v ∈ K, where F 0(z, s; t) is the generalized directional derivative of
F(z, ·) at the point s in the direction t .

The motivation to study this problem comes from some mechanical
problems where a certain nondifferentiable term perturbs the classical
functions. Panagiotopoulos [26] developed a more realistic approach, the
so-called theory of variational–hemivariational inequalities, see for exam-
ple the monographs Motreanu–Panagiotopoulos [20], Motreanu–Rădule-
scu [21] and Naniewicz–Panagiotopoulos [23], Gasiński–Papageorgiou [11],
where the problems are studied on bounded domains.

On unbounded domains the methods must be changed, because the
embedding of the Sobolev space W 1,p(RN) into Lp(RN) is not compact.
A widely used tool in treating variational–hemivariational problems is the
Principle of Symmetric Criticality, which states that it is enough to study the
existence of critical points of a given function on a certain subspace, not
on the whole space. For instance we mention the space of radially symmet-
ric functions of H 1(RN). In the differentiable case this principle was proved
by R. S. Palais [25] and it was successfully applied by T. Bartsch and M.
Willem in [5, 6]. The case of locally Lipschitz functions was developed by
W. Krawcewicz and W. Marzantowicz [13] and applied by A. Kristály [16,
17], and also by C. Varga [30], Zs. Dályai and Cs. Varga [10]. Extensions of
this principle for Szulkin [29] type functionals can be found in the paper [14]
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of J. Kobayashi and M. Ôtani. The case of Motreanu–Panagiotopoulos type
functionals was investigated by A. Kristály, Cs. Varga, V. Varga in [18].

In the case when F is of class C1 with F ′ =f problem (Pλ) becomes

(P 1
λ ) −�pu+a(x, y)up−1 =λf (x, y, u), y ∈R

L×R
M

and was studied by D. C. de Morais Filho, M. A. S. Souto and J. Marcos
Do [22].

When p= 2,L= 0, and F is of class C1 with F ′ =f , then problem (Pλ)

becomes

(P 2
λ ) −�u+a(y)u=λf (y, u), y ∈R

M.

When a≡ 1 or a is radially symmetric or its level sets have some local or
global properties, the existence and multiplicity of solutions of these prob-
lems were studied by Bartsch and Willem [5], T. Bartsch, Z. Liu, T. Weth
[2, 3], T. Bartsch and Z.-Q. Wang [4], M. Willem [31].

If p= 2, a is coercive and F is locally Lipschitz the problem (Pλ) was
studied by F. Gazzola, V. Rădulescu in [12], while the case p= 2, a≡ 1 and
F locally Lipschitz the problem (Pλ) was investigated by A. Kristály [16], Cs.
Varga [30]. In the above mentioned papers K coincides with the whole space.

Here the main results (Theorems 3.1 and 3.2) establish the existence
and multiplicity of solutions of (Pλ), by using the Principle of Symmetric
Criticality (see [18]) in connection with the Mountain Pass Theorem (Cor-
ollary 3.2 from [20]) and a three critical point Theorem due to S. Marano
and D. Motreanu (see Theorem B in [19]). To do this we also used the
following embedding property given in [22] by D. C. de Morais Filho,
M. A. S. Souto, J. Marcos Do: Ea is continuously embedded in Ls(RL ×
R
M) if p ≤ s ≤ p∗, and compactly embedded if p < s < p∗. These results

are given in Section 2 together with two examples. Section 3 and 4 con-
tain the proofs of the main theorems together with some auxiliary results.
The Appendix is devoted to the Principle of Symmetric Criticality for
Motreanu–Panagiotopoulos functionals.

2. Basic Notions and Preliminary Results

Let (X,‖ · ‖) be a real Banach space and X∗ its topological dual. A func-
tion h:X→ R is called locally Lipschitz if each point u ∈X possesses a
neighborhood Nu such that |h(u1)−h(u2)|≤L‖u1 −u2‖ for all u1, u2 ∈Nu,

for a constant L>0 depending on Nu. The generalized directional derivative
of h at the point u∈X in the direction z∈X is

h0(u; z)= lim sup
w→u, t→0+

h(w+ tz)−h(w)
t

.
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The generalized gradient of h at u∈X is defined by

∂h(u)={x∗ ∈X∗: 〈x∗, x〉≤h0(u;x), ∀x ∈X},

where 〈·, ·〉 is the duality pairing between X∗ and X.
Let I = h+ψ, with h:X→ R locally Lipschitz and ψ :X→ (−∞,+∞]

convex, proper (i.e., ψ �≡+∞), and lower semicontinuous. I is a Motreanu–
Panagiotopoulos type functional, see [20, Chapter 3 ].

DEFINITION 2.1 ([20, Definition 3.1]). An element u∈X is said to be a
critical point of I =h+ψ, if

h0(u;v−u)+ψ(v)−ψ(u)≥0, ∀v∈X.

In this case, I(u) is a critical value of I.

Let G be a topological group which acts linearly on X, i.e., the action
G×X→X: [g,u] �→gu is continuous and for every g∈G, the map u �→gu

is linear. The group G induces an action of the same type on the dual
space X∗ defined by 〈gx∗, u〉=〈x∗, g−1u〉 for every g∈G,u∈X and x∗ ∈X∗.
A function h:X→R ∪{+∞} is G-invariant if h(gu)=h(u) for every g ∈G
and u∈X. A set K⊆X (or K⊆X∗) is G-invariant if gK={gu:u∈K}⊆K
for every g∈G. Let

�={u∈X:gu=u for every g∈G}

the fixed point set of X under G. The Principle of Symmetric Criticality
for Motreanu–Panagiotopoulos functionals is the following.

THEOREM 2.1. Let X be a reflexive Banach space and I =h+ψ:X→R∪
{+∞} be a Motreanu–Panagiotopoulos type functional. If a compact group
G acts linearly on X, and the functionals h and ψ are G-invariant, then every
critical point of I|� is also a critical point of I.

DEFINITION 2.2 ([20, Definition 3.2]). The functional I = h+ψ is said
to satisfy the Palais-Smale condition at level c∈R (shortly, (PS )c), if every
sequence (un) from X satisfying I(un)→ c and

h0(un;v−un)+ψ(v)−ψ(un)≥−εn‖v−un‖, ∀v∈X,

for a sequence (εn) in [0,∞) with εn→ 0, contains a convergent subsequence.
If (PS)c is verified for all c∈R, I is said to satisfy the Palais-Smale condition
(shortly,(PS)).
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For the later use a non smooth version of the Mountain Pass Theorem, i.e.
Corollary 3.2 from [20].

THEOREM 2.2. Assume that the functional I :X→ (−∞,+∞] defined by
I =h+ψ , satisfies (PS), I (0)=0, and

(i) there exist constants α>0 and ρ>0, such that I (u)≥α for all ||u||=ρ;
(ii) there exists e∈X, with ||e||>ρ and I (e)≤0.

Then, the number

c= inf
f∈�

sup
t∈[0,1]

I (f (t)),

where

�={f ∈C([0,1],X):f (0)=0, f (1)= e},

is a critical value of I with c≥α.

Let h1, h2:X→ R be locally Lipschitz functions, and let ψ1:X→]−∞,
+∞] be a convex, proper, lower semicontinuous function. Then the func-
tion h1 +ψ1 +λh2 is a Motreanu–Panagiotopoulos type functional for every
λ ∈ R. The following result was proved by Marano and Motreanu [19],
Theorem B.

THEOREM 2.3. Suppose that (X, || · ||) is a separable and reflexive Banach
space. Let I1 = h1 +ψ1, I2 = h2, and let �⊆ R be an interval. We assume
that:

(a1) h1 is weakly sequentially lower semicontinuous and h2 is weakly
sequentially continuous;

(a2) for every λ∈� the function I1 +λI2 fulfils (PS)c, c∈R, and

lim
||u||→+∞

(I1(u)+λI2(u))=+∞;

(a3) there exists a continuous concave function h:�→R satisfying

sup
λ∈�

inf
u∈X
(I1(u)+λI2(u)+h(λ))< inf

u∈X
sup
λ∈�

(I1(u)+λI2(u)+h(λ)).

Then, there exists an open interval �0 ⊂�, such that for each λ ∈�0 the
function I1 +λI2 has at least three critical points in X.
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We introduce the functional F :E→R defined by

F(u)=
∫

RL+M
F (z, u(z))dz.

In our proofs we will need the following result (see [10]).

LEMMA 2.1. If the function F satisfies the condition (F1), then F is locally
Lipschitz and we have

F0(u, v)≤
∫

RL+M
F 0(z, u(z);v(z))dz,

for every u, v∈E. Moreover, the above inequality remains true on every closed
subspace Y of E:

(
F

∣∣∣
Y

)0
(u, v)≤

∫
RL+M

F 0(z, u(z);v(z))dz,

for every u, v∈Y .

Let Iλ:E→]−∞,+∞] be defined by

Iλ(u)= 1
p

||u||p−λF(u)+ψK(u),

where ψK(u) denotes the indicator function of the closed convex cone K,
i.e.

ψK(u)=
{

0, if x ∈K,
+∞, otherwise.

Clearly ψK is convex and lower-semicontinuous on E.
Now we rewrite problem (Pλ) by using the duality map. By Theorem

3.5 from [1] it follows that E is a separable, reflexive and uniform convex
Banach space. We denote by E� its dual. Let J :E→E� the duality map-
ping corresponding to the weight function ϕ: [0,+∞[→ [0,+∞[ defined by
ϕ(t)= tp−1, where p∈]1,+∞[. It is well known that the duality mapping J
satisfies the following conditions:

||Ju||�=ϕ(||u||) and 〈Ju,u〉= ||Ju||�||u|| for all u∈E.

Moreover, the functional χ :E→R defined by χ(u)= (1/p)||u||p is convex
and Gateaux differentiable on E, and dχ = J . For these properties of the
duality mapping J we refer to [8].
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The problem (Pλ) can be reformulated in the following way: For λ> 0
find u∈K such that

〈Ju, v−u〉+λ
∫

RL+M
F 0(z, u(z);v(z)−u(z))dx≥0

for every v∈K.

LEMMA 2.2. Fix λ>0 arbitrary. Every critical point u∈E of the functional
Iλ is a solution of the problem (Pλ).

Proof. Since u∈E is a critical point of the functional Iλ, one has

〈Ju, v−u〉+λ(−F)0(u;v−u)+ψK(v)−ψK(u)≥0

for every v∈E. From Lemma 2.1 we obtain

〈Ju, v−u〉+λ
∫

RL+M
F 0(z, u(z);u(z)−v(z))dz+ψK(v)−ψK(u)≥0

for every v∈E.
Therefore u∈K and for every v∈K we have

〈Ju, v−u〉+λ
∫

RL+M
F 0(z, u(z);u(z)−v(z))dz≥0.

We consider a non-negative continuous function a: R
L×R

M →R (L≥2)
satisfying the assumptions (A1), (A2), (A3) given in Section 1 and recall the
following subspaces of W 1,p(RL×R

M)

Ẽ={u∈W 1,p(RL×R
M):u(x, y)=u(x ′, y) ∀x, x ′ ∈R

L, |x|=|x ′|,∀y ∈R
M},

E=
{
u∈W 1,p(RL×R

M):
∫

RL+M
a(z)|u(z)|pdz<∞

}
,

Ea = Ẽ∩E=
{
u∈ Ẽ:

∫
RL+M

a(z)|u(z)|pdz<∞
}

endowed with the norm

‖u‖p=
∫

RL+M
|∇u(z)|pdz+

∫
RL+M

a(z)|u(z)|pdz.

The next result is proved by de Morais Filho, Souto, Marcos Do [22] and
is a very useful tool in our investigations.

THEOREM 2.4. If (A1), (A2) and (A3) hold, then the Banach space Ea is
continuously embedded in Ls(RL×R

M), if p≤ s≤p∗, and compactly embed-
ded if p<s <p∗.
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We have,

‖u‖s ≤C(s)‖u‖ for each u∈Ea,

where ‖ · ‖s is the norm in Ls(RL × R
M) and C(s) > 0 is the embedding

constant.

3. Main Results and Examples

Let

G=
{
g:E→E:g(v)=v ◦

(
R 0
0 IdRM

)
,R∈O(RL)

}
,

where O(RL) is the set of all rotations on R
L and IdRM denotes the M×M

identity matrix. The elements of G leave R
L+M invariant, i.e. g(RL+M)=

R
L+M for all g∈G.
The action of G over E is defined by

(gu)(z)=u(g−1z), g∈G, u∈E, a.e. z∈R
L+M.

As usual we shall write gu in place of π(g)u.
A function u defined on R

L+M is said to be G-invariant, if

u(gz)=u(z), ∀g∈G, a.e. z∈R
L+M.

Then u∈E is G-invariant if and only if u∈�, where

�:=Ea = Ẽ∩E.

We observe that the norm

‖u‖=
{∫

RL+M
(|∇u(z)|p+a(z)|u(z)|p)dz

} 1
p

is G-invariant.
In order to study our problem we give the assumptions on the nonlinear

function F . We assume that F : RL×R
M ×R →R is a Carathéodory func-

tion, which is locally Lipschitz in the second variable (the real variable) and
satisfies the following conditions:

(F1) F(z,0)=0, and there exist c1>0 and r ∈]p,p�[ such that

|ξ |≤ c1(|s|p−1 +|s|r−1), ∀ξ ∈ ∂F (z, s), (z, s)∈R
L+M ×R.
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We denoted by ∂F (z, s) the generalized gradient of F(z, ·) at the point s∈R.

(F2) lim
s→0

max{|ξ |: ξ ∈ ∂F (z, s)}
|s|p−1 =0 uniformly for every z∈R

L+M.

(F3) There exists ν >p such that

νF (z, s)+F 0(z, s;−s)≤0, ∀(z, s)∈R
L+M ×R.

(F4) There exists r >0 such that

inf{F(z, s): (z, |s|)∈R
L+M × [r,∞)}>0.

Arguing as in the proof of Lemma 4.1 in [17] one has.

Remark 3.1. (a) If F : R
L+M × R → R satisfies (F1) and (F2), then for

every ε>0, there exists c(ε)>0 such that

(i) |ξ |≤ ε|s|p−1 + c(ε)|s|r−1, ∀ξ ∈ ∂F (z, s), (z, s)∈R
L+M ×R;

(ii) |F(z, s)|≤ ε|s|p+ c(ε)|s|r , ∀(z, s)∈R
L+M ×R.

(b) If F : R
L+M × R → R satisfies (F1), (F3) and (F4), then there exist

c2, c3>0 and ν ∈]p,p�[ such that

F(z, s)≥ c2|s|ν − c3|s|p.

To study the existence of the solutions of problem (Pλ), it is sufficient to
prove the existence of critical points of the functional Iλ (see Lemma 2.2).

The main results of the paper are:

THEOREM 3.1. Let F : R
L × R

M × R → R be a function, which satisfies
(F1)–(F4) and F(·, s) is G-invariant for every s ∈ R. Then for every λ > 0
problem (Pλ) has a nontrivial positive solution.

From the other hand, by replacing (F3) and (F4) with the following two
conditions

(F′3) There exist q ∈]0, p[, ν ∈ [p,p�], α ∈ L
ν
ν−q (RL+M),β ∈ L1(RL+M)

such that
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F(z, s)≤α(z)|s|q +β(z)

for all s ∈R and a.e. z∈R
L+M;

(F′4) There exists u0 ∈K such that
∫

RL+M
F (z, u0(z))dz>0;

we obtain at least three solutions to problem (Pλ). To be precise we estab-
lish the following theorem.

THEOREM 3.2. Let F :RL×R
M ×R→R be a function which satisfies (F1),

(F2), (F′3), (F′4) and F(·, s) is G-invariant for all s ∈ R. Then there exists
an open interval �0 ⊂� such that for each λ∈�0 problem (Pλ) has at least
three distinct solutions which are axially symmetric.

Remark 3.2. If in the above theorem we change the condition (F′3) with

(F′′3) lim sup|s|→+∞
F(z, s)

|s|p ≤0, uniformly in z∈R
L×R

M,

then the conclusion of Theorem 3.2 remains true.

Here we give two examples, where the above results can be applied
successfully.

EXAMPLE 3.1. Let k ∈ R, k > 1. We define the sequence of real numbers
(An) by A0 =0, and

An= 1
1k

+ 1
2k

+ 1
3k

+· · ·+ 1
nk
, n≥1.

Let r >p>2. We consider the functions f,F : R→R given respectively by

f (s)= s|s|p−2(|s|r−p+An) for s ∈]−n−1,−n]∪ [n,n+1[, n∈N,

F (u)=
∫ u

0
f (s)ds for u∈]−n−1,−n]∪ [n,n+1[, n∈N.

Clearly F satisfies (F1), (F2), (F3) and (F4), hence owing to Theorem 3.1
problem (Pλ) has a nontrivial positive solution.

EXAMPLE 3.2. Let A:RL→R be a continuous, nonnegative, not identically
zero, axially symmetric function with compact support in R

L. We consider
F : RL×R

M ×R→R defined by

F((x, y), s)=A(x)min{sr , |s|q} for (x, y)∈R
L×R

M, s ∈R,

where r ∈ ]p, (L+M)p/L+M−p[ is an odd number and q ∈]0, p[. The
function F satisfies the assumptions (F1), (F2), (F′3) and (F′4) and F(·, s)
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is G-invariant for all s ∈R. Theorem 3.2 implies that there exists an open
interval �0 ⊂� such that for each λ∈�0 problem (Pλ) has at least three
distinct solutions which are axially symmetric.

4. Proof of Theorem 3.1

Because the cone K is G-invariant, it follows that ψK is G-invariant. Tak-
ing into account that the action of G is linear and isometric on E, we
deduce that the function χ(u)= 1

p ||u||p is G-invariant. The function F is
also G-invariant, because F(·, s) is G-invariant for every s ∈R. If we apply
Theorem 2.1, it is sufficient to prove that the functional I�:=Iλ|� has crit-
ical points, which implies that the functional Iλ has critical points, which
are solutions for problem (Pλ). We introduce the following notations:

|| · ||� =|| · ||
∣∣∣
�
, F� =F

∣∣∣
�
, ψ� =ψK

∣∣∣
�

and the restricted duality map J� :�→�∗ with J� = J

∣∣∣
�

. Therefore we
have

I�(u)= 1
p

||u||p� −λF�(u)+ψ�(u).

In the next we verify that the conditions of Theorem 2.2 are satisfied by
the functional I�.

PROPOSITION 4.1. If F :RL×R
M ×R→R verifies the conditions (F1)–(F3)

and F(·, s), s ∈ R is G- invariant, then I� satisfies the (PS) condition, for
every λ>0.

Proof. Let λ>0 and c∈R be some fixed numbers and let (un)⊂� be a
sequence such that

I�(un)= 1
p

||un||p� −λF�(un)+ψ�(un)→ c (4.1)

and for every v∈� we have

〈J�un, v−un〉+λ
∫

RL+M
F 0(z, un(z);un(z)−v(z))dz+

+ψ�(v)−ψ�(un)≥−εn||v−un||�, (4.2)

for a sequence (εn) in [0,+∞[ with εn→0.
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By (4.1) one concludes that (un)⊂ K ∩�. Setting v = 2un in (4.2), we
obtain

〈J�un, un〉+λ
∫

RL+M
F 0(z, un(z);−un(z))dz≥−εn||un||�. (4.3)

By (4.1) one has for large n∈N that

c+1≥ 1
p

||un||p� −λF�(un). (4.4)

We multiply inequality (4.3) with ν−1 and use Lemma 2.1 to obtain

εn
||un||�
ν

≥−〈J�un, un〉
ν

− λ

ν

∫
RL+M

F 0(z, un(z);−un(z))dz. (4.5)

Adding the inequalities (4.4) and (4.5), and using (F3) we get

c+1+ εn

ν
||un||� ≥

(
1
p

− 1
ν

)
||un||p� −λ

∫
RL+M

[F(z, un(z))+

+1
ν
F 0(z, un(z);−un(z))]dz

≥
(

1
p

− 1
ν

)
||un||p�.

From this, we get that the sequence (un)⊂K∩� is bounded. Because E is
reflexive, it follows that � is reflexive too and there exists an element u∈
� such that un⇀u weakly. Since K ∩� is closed and convex, we get u∈
K∩ �. Moreover, from (4.2) with v=u we obtain

〈J�un, u−un〉+λ
∫

RL+M
F 0(z, un(z);un(z)−u(z))dz≥−εn||un−u||�. (4.6)

From this we get

〈J�un, un−u〉≤λ
∫

RL+M
F 0(z, un(z);un(z)−u(z))dz+ εn||un−u||�

≤λ
∫

RL+M
max{ξn(z)(un(z)−u(z)): ξn(z)∈ ∂F (z, un(z))}dz

+εn||un−u||�
≤λ

∫
RL+M

(
ε|un(z)|p−1 + c(ε)|un(z)|r−1

)
|un(z)−u(z)|dz

+εn||un−u||�.
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Hence, by Hölder’s inequality and the fact that the inclusion � ↪→
Lp(RL+M) is continuous (see Theorem 2.4), we obtain

〈J�un, un−u〉≤λεC(p)||un−u||�||un||p−1
p +

+λc(ε)||un−u||r ||un||r−1
r + εn||un−u||�.

Moreover, the inclusion � ↪→ Lr(RL+M) is compact for r ∈]p,p∗[ (see
Theorem 2.4), therefore ||un−u||r →0 as n→+∞. For →0+ and n→+∞
we obtain that lim supn→+∞〈J�un, un − u〉 ≤ 0. Finally, since the duality
operator J� has the (S+) property (see, Proposition 2.1 in [24]) we obtain
un→u in K, because K is closed. �

PROPOSITION 4.2. If F : R
L × R

M × R → R verifies (F1)–(F4) and F(·, s)
is G-invariant for every s ∈ R, then for every λ> 0 the following assertions
are true:

(i) there exist constants αλ > 0 and ρλ > 0 such that I�(u) ≥ αλ for all
||u||� =ρλ;

(ii) there exists eλ∈K with ||eλ||>ρλ and I�(eλ)≤0.

Proof. From Remark 3.1 and from the fact that the embedding � ↪→
Ll(RL+M) is continuous for l ∈ [p,p�], it follows that

F�(u)≤ εCp(p)||u||p� + c(ε)Cr(r)||u||r�,

for every u∈�. It is suffices to restrict our attention to elements u which
belong to K∩�, otherwise I�(u) will be +∞, i.e. (i) holds trivially.

Let λ> 0 be arbitrary. We choose ε ∈]0,1/pλCp(p)[ and for u∈ K ∩� we
have

I�(u)= 1
p

||u||p� −λF�(u)≥
(

1
p

−λεCp(p)
)

||u||p� −λc(ε)Cr(r)||u||r�.

We denote by A= 1
p − λεCp(p) and B = λc(ε)Cr(r) and we consider the

function g : R+ → R given by g(t)=Atp −Btr . The function g attains its

global maximum in the point tλ =
(
pA
rB

) 1
r−p

. If we take ρλ = tλ and αλ ∈
]0, g(tλ)[, the condition (i) is fulfilled.

To prove (ii) from (b) Remark 3.1 we observe that for every u∈K∩� we have

I�(u)≤ 1
p

||u||p� +λc3C
p(p)||u||p� −λc2||u||νν.
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If we fix an element v ∈ (K ∩�)\{0} and in place of u we put tv, then
we have

I�(tv)≤
(

1
p

+λc3C
p(p)

)
||v||p�tp−λc2||v||ννtν.

From this we see that if t is large enough, then ||tv||� >ρλ and I�(tv)<0.
If we take eλ= tv we obtain the desired results.

The Proof of Theorem 3.1. Now we prove that the conditions of Theorem
2.2 are satisfied by the functional I�. Because F(z,0)=0, it follows that

I�(0)=
∫

RL+M
F (z,0)dz=0.

From Proposition 4.1 we get that I� satisfies the (PS) condition. Proposi-
tion 4.2 implies that I� satisfies the conditions (i) and (ii) from Theorem
2.2, hence the number

cλ= inf
f∈�

sup
t∈[0,1]

I�(f (t)),

where

�λ={f ∈C([0,1],�):f (0)=0, f (1)= eλ},

is a critical value of I� with cλ≥αλ.

5. Proof of Theorem 3.2

Now we give some auxiliary results in order to prove Theorem 3.2. We
consider the functional f :E×�→] − ∞,+∞] given by f (u,λ)= I1(u)+
λI2(u), where

I1(u)= 1
p

||u||p+ψK(u), I2(u)=−F(u)=−
∫

RL+M
F (z, u(z))dz.

As in Lemma 2.2 we have that every critical point of the function f =
I1 + λI2 is a solution of problem (Pλ). Using Theorem 2.1 it is suffi-
cient to prove that the functional f� = (I1 +λI2)|� satisfies conditions from
Theorem 2.3, where we choose h1,�1, h2:�→R

h1(u)= 1
p

||u||p�, �1(u)=ψ�(u),

h2(u)=−F�(u)=−
∫

RL+M
F (z, u(z))dz, u∈�,
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and take

I1 =h1 +�1, I2 =h2.

First we prove that (a1) holds.

PROPOSITION 5.1. If F :RL×R
M ×R→R verifies the conditions (F1) and

(F2), then h1 is weakly sequentially lower semicontinuous and h2 is weakly
sequentially continuous.

Proof. The weakly sequentially lower semicontinuity of h1 = 1/p|| · ||p� is
standard (every convex lower semicontinuous function is sequentially lower
semicontinuous, see e.g. [7]).

In order to prove the weakly sequentially continuity of h2 we assume
that (un) is a sequence in � such that un⇀u (in �). We will prove that
F�(un)→F�(u).

By Lebourg’s Mean Value Theorem (see [9]) it follows that there exist
θn∈ [0,1] and vn∈ ∂F�(u+ θn(un−u)) such that

F�(un)−F�(u)=〈vn, un−u〉.

We denote wn = u+ θn(un − u). Using the definition of F0
�, Lemma 2.1 it

follows that

F�(un)−F�(u)≤ (F�)
0(wn;un−u)≤

∫
RL+M

F ◦(z,wn(z);un(z)−u(z))dz

=
∫

RL+M
max

{
〈v(z), un(z)−u(z)〉:v∈ ∂F (z,wn(z))

}
.

Now we use Remark 3.1 to get

F�(un)−F�(u)≤
∫

RL+M

(
ε|wn(z)|p−1 + c(ε)|wn(z)|r−1

)
|un(z)−u(z)|dz.

We use Hölder’s inequality and the fact that the inclusion � ↪→Lp(RL+M)
is continuous (see Theorem 2.4) to obtain

F�(un)−F�(u)≤ εC(p)‖un−u‖�‖wn‖p−1
p + c(ε)C(r)‖un−u‖r‖wn‖r−1

r .

(5.1)

Now we use the same ideas as before for −F� and find the existence of
τn∈ [0,1] and v̂n∈ ∂(−F�)(u+ τn(un−u)) such that

F�(u)−F�(un)=〈v̂n, un−u〉.
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We denote ŵn=u+τn(un−u). Using the definition of −F0
�, and properties

of the generalized gradient (see [9]), it follows that

F�(u)−F�(un)≤ (−F�)
0(ŵn;un−u)= (F�)

0(ŵn;u−un).

Analogously to (5.1) we get

F�(u)−F�(un)≤ εC(p)‖un−u‖�‖ŵn‖p−1
p + c(ε)C(r)×

×‖un−u‖r‖ŵn‖r−1
r . (5.2)

Using (5.1) and (5.2) we have

|F�(un)−F�(u)|≤ εC(p)‖un−u‖�(‖wn‖p−1
p +

+‖ŵn‖p−1
p )+ c(ε)C(r)‖un−u‖r (‖wn‖r−1

r +‖ŵn‖r−1
r ).

(5.3)

The inclusion � ↪→Lr(RL+M) is compact for r ∈]p,p∗[ (see Theorem 2.4),
then we get that ||un − u||r → 0 as n→ +∞, while the sequences (wn)
and (ŵn) are bounded in the ‖ · ‖p and ‖ · ‖r norms. Then in (5.3) we get
F�(un)→F�(u). Hence h2 is weakly sequentially continuous.

Proof of Theorem 3.2. For this let u∈ K ∩�, from condition (F ′3) and
from the fact that the embedding � ↪→Lν(RL+M) is continuous and q <p

it follows that

f�(u,λ)≥ 1
p

||u||p� −λ
∫

RL+M
α(z)|u(z)|qdz−λ

∫
RL+M

β(z)dz

≥ 1
p

||u||p� −λ||α|| ν
ν−q ||u||qν −λ||β||1

≥ 1
p

||u||p� −λ||α|| ν
ν−q C

q(q)||u||q� −λ||β||1.

Therefore, if ||u||� →+∞, we have f�(u,λ)→+∞. Let (un)⊂K∩� be
a sequence such that

f�(un, λ)→ c (5.4)

and for every v∈� we have

〈J�un, v−un〉+λ
∫

RL+M
F 0(z, un(z);un(z)−v(z))dz+ψ�(v)−ψ�(un)

≥−εn||v−un||�, (5.5)
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for a sequence (εn) in [0,+∞[ with εn → 0. From (5.4) follows that the
sequence (un) is bounded in K ∩� and as in Proposition 4.1 we get that
there exists an element u∈K∩� such that un→u. Let us define the func-
tion

g(t)= sup
{
F�(u):

1
p

||u||p� ≤ t
}
.

Using (ii) from Remark 3.1 and the fact that the inclusion � ↪→Ll(RL+M),
l ∈ [p,p�] is continuous, it follows that

g(t)≤ εCp(p)t+ c(ε)Cr(r)t rp . (5.6)

On the other hand g(t)≥0 for each t >0, then from the above relation we
get

lim
t→0+

g(t)

t
=0. (5.7)

By (F′4) it is clear that u0 �= 0 (since F(0)= 0). Therefore it is possible to
choose a number η such that

0<η<F�(u0)

[
1
p

||u0||p�
]−1

.

From limt→0+ g(t)/t = 0 it follows the existence of a number t0 ∈]
0,1/p||u0||p�

[
such that g(t0)<ηt0. Thus

g(t0)<

[
1
p

||u0||p�
]−1

F�(u0)t0.

Let ρ0>0 such that

g(t0)<ρ0<

[
1
p

||u0||p�
]−1

F�(u0)t0. (5.8)

Due to the choice of t0 and (5.8) we have

ρ0<F�(u0). (5.9)

Define h:�= [0,+∞[→ R by h(λ)= ρ0λ. We prove that the function h

satisfies the inequality

sup
λ∈�

inf
u∈K∩�

(f�(u,λ)+h(λ))< inf
u∈K∩�

sup
λ∈�

(f�(u,λ)+h(λ)).
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The function

��λ �→ inf
u∈K∩�

[
1
p

||u||p� +λ(ρ0 −F�(u))

]

is obviously upper semicontinuous on �.
From (5.9) it follows that

lim
λ→+∞

inf
u∈K∩�

[f�(u,λ)+ρ0λ]≤ lim
λ→+∞

[
1
p

||u0||p� +λ(ρ0 −F�(u0))

]
=−∞.

(5.10)

Thus we find an element λ∈� such that

sup
λ∈�

inf
u∈K∩�

(f�(u,λ)+ρ0λ)= inf
u∈K∩�

[
1
p

||u||p� +λ(ρ0 −F�(u))

]
. (5.11)

From g(t0) < ρ0 it follows that for all u ∈� with 1/p||u||p� ≤ t0, we have
F�(u)<ρ0. Hence

t0 ≤ inf
{

1
p

||u||p�:F�(u)≥ρ0

}
. (5.12)

On the other hand,

inf
u∈K∩�

sup
λ∈�

(f�(u,λ)+ρ0λ)= inf
u∈K∩�

[
1
p

||u||p� + sup
λ∈�

(λ(ρ0 −F�(u)))

]

= inf
{

1
p

||u||p�:F�(u)≥ρ0

}
.

Thus (5.12) is equivalent with

t0 ≤ inf
u∈K∩�

sup
λ∈�

[f�(u,λ)+ρ0λ]. (5.13)

There are two distinct cases:
(I) If 0≤λ<t0/ρ0, we have

inf
u∈K∩�

[
1
p

||u||p� +λ(ρ0 −F�(u))

]
≤f�(0, λ)=λρ0<t0.

Combining the above inequality with (5.11) and (5.13) we obtain the
inequality from (a2) Theorem 2.3.
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(II) If t0/ρ0 ≤λ, then from ρ0<F�(u0) and (5.8) it follows

inf
u∈K∩�

[
1
p

||u||p� +λ(ρ0 −F�(u))

]
≤ 1
p

||u0||p� +λ(ρ0 −F�(u0))

≤ 1
p

||u0||p� + t0

ρ0
(ρ0 −F�(u0))< t0.

Theorem 2.3 implies that there exists an open interval �0 ⊂�, such that
for each λ∈�0, the function f�(·, λ) has at least three critical points in K∩
�. Therefore, problem (Pλ) has at least three distinct solutions for every
λ∈�0. This ends the proof of Theorem 3.2. �

Final remark. The results of this article remain true for a more general
class of convex functions defined on the cone of positive functions, than the
indicator function of K. This will be investigated in a furthercoming paper.

6. Appendix–The Principle of Symmetric Criticality
for Motreanu–Panagiotopolus functionals

Following the paper of A. Kristály, C. Varga, V. Varga from [18] we pres-
ent in this section the Principle of Symmetric Criticality for Motreanu–
Panagiotopolus functionals.

Let I be a Motreanu–Panagiotopoulos type functional, i.e. I =h+ψ, with
h:X→R locally Lipschitz and ψ :X→ (−∞,+∞] convex, proper (i.e. ψ �≡
+∞), and lower semicontinuous functions.

One can characterize the critical points (in the sense of Definition 2.1)
by means of differential inclusions.

PROPOSITION 6.1 ([15]). An element u∈X is a critical point of I =h+ψ,
if and only if 0 ∈ ∂h(u)+ ∂ψ(u), where ∂ψ(u) denotes the subdifferential of
the convex function ψ at u, i.e.

∂ψ(u)={x∗ ∈X∗:ψ(v)−ψ(u)≥〈x∗, v−u〉X for every v∈X}.

Let G be a topological group which acts linearly on X, i.e., the action
G×X→X: [g,u] �→gu is continuous and for every g∈G, the map u �→gu is
linear. The group G induces an action of the same type on the dual space
X∗ defined by 〈gx∗, u〉X = 〈x∗, g−1u〉X for every g ∈G, u∈X and x∗ ∈X∗.
A function h:X→R ∪{+∞} is G-invariant if h(gu)=h(u) for every g ∈G
and u∈X. A set K⊆X (or K⊆X∗) is G-invariant if gK={gu:u∈K}⊆K
for every g∈G. Let

�={u∈X:gu=u for every g∈G}
be the fixed point set of X under G.
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In order to give the proof of Theorem 2.1, we recall first some facts from
[14]. Let

�(X)={ψ :X→R∪{∞}:ψ is convex, proper, lower semicontinuous};
�G(X)={ψ ∈�(X): ψ is G− invariant};

�G(X
∗)={K⊆X∗: K is G− invariant, weak∗−closed, convex}.

PROPOSITION 6.2 ([14, Theorem 3.16]). Assume that a compact group G
acts linearly on a reflexiv Banach space X. Then for every K ∈�G(X∗) and
ψ ∈�G(X) one has

K|� ∩ ∂(ψ |�)(u) �=∅⇒K ∩ ∂ψ(u) �=∅, u∈�, (6.1)

where K|� ={x∗|�:x∗ ∈K} with 〈x∗|�,u〉� =〈x∗, u〉X, u∈�.

Let A:X→X be the averaging operator over G, defined by

Au=
∫
G

gudµ(g), u∈X, (6.2)

where µ is the normalized Haar measure on G. Relation (6.2) means

〈x∗,Au〉X=
∫
G

〈x∗, gu〉Xdµ(g), u∈X, x∗ ∈X∗. (6.3)

It is easy to verify that A is a continuous linear projection from X to �

and for every G-invariant closed convex set K⊆X we have A(K)⊆K. The
adjoint operator A∗:�∗ →X∗ of A:X→� is defined by

〈w∗,Az〉� =〈A∗w∗, z〉X, z∈X, w∗ ∈�∗. (6.4)

LEMMA 6.1 Let h:X→ R be a G-invariant locally Lipschitz function and
u∈�. Then

(a) ∂(h|�)(u)⊆ ∂h(u)|�.
(b) ∂h(u)∈�G(X∗).

Proof. (a) Let us fix w∗ ∈ ∂(h|�)(u). Then by definition, one has

〈w∗, v〉� ≤ (h|�)0(u;v) for every v∈�.
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First, a simple estimation shows that (h|�)0(u;v)≤h0(u;v) for every v∈�.
Thus, applying the above inequality for v=Az ∈� with z ∈X arbitrarily
fixed, by (6.4) one has

〈A∗w∗, z〉X=〈w∗,Az〉� ≤h0(u;Az). (6.5)

Using [9, Proposition 2.1.2 (b)] and (6.3), we get

h0(u;Az)=max{〈x∗,Az〉X: x∗ ∈ ∂h(u)}
=max{

∫
G

〈x∗, gz〉Xdµ(g): x∗ ∈ ∂h(u)}

≤
∫
G

h0(u;gz)dµ(g)=
∫
G

h0(g−1u; z)dµ(g)=
∫
G

h0(u; z)dµ(g)
=h0(u; z).

Combining this relation with (6.5), we conclude that A∗w∗ ∈ ∂h(u). Since
w∗ =A∗w∗|�, we obtain that w∗ ∈ ∂h(u)|�.

(b) Since ∂h(u) is a nonempty, convex and weak∗-compact subset of
X∗ (see [9, Proposition 2.1.2 (a)]), it is enough to prove that ∂h(u) is
G-invariant, i.e., g∂h(u)⊆∂h(u) for every g∈G. To this end, let us fix g∈G
and x∗ ∈ ∂h(u). Then, for every z∈X we have

〈gx∗, z〉X=〈x∗, g−1z〉X≤h0(u;g−1z)=h0(gu; z)=h0(u; z),

i.e., gx∗ ∈ ∂h(u).

Proof of Theorem 2.1. Let u ∈ � be a critical point of I|�. Apply-
ing Proposition 6.1 one has 0 ∈ ∂(h|�)(u)+ ∂(ψ |�)(u). Moreover, due to
Lemma 6.1(a) we have

∅ �=−∂(h|�)(u)∩ ∂(ψ |�)(u)⊆−∂h(u)|� ∩ ∂(ψ |�)(u).

By choosing K=∂h(u) in Proposition 6.2 and taking into account Lemma
6.1(b), relation (6.1) implies that ∅ �= −∂h(u)∩ ∂ψ(u). Thus, in particular
0∈ ∂h(u)+ ∂ψ(u), i.e., u is indeed a critical point of I. �
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